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DEBELIH PLOČ A S JEDNOLIKO RASPOREĐENOM 

MASOM 
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Abstract 

A four-node finite element is developed for modeling plates according to the Mindlin 
plate theory and it is constructed with the assumed shear strain approach. The 
element is previously verified in a static analysis on the benchmark problems of 
moderately thick and extremely thin plate models and compared to the other elements 
known from the literature. As starting interpolations, a complete cubic polynomial for 
the transverse displacement field and quadratic polynomials for the two rotation 
fields are used, and they are problem dependent at the same time. Some unfavorable 
terms are excluded from the derived shear strain expression to avoid locking 
phenomena in the thin geometry conditions. In this paper, the proposed element is 
tested for the dynamic analysis calculating the natural frequencies of plate vibrations 
with the uniformly distributed mass. The influence of the element consistent mass 
matrix is analyzed on the first 12 vibration modes. The results are verified on the 
circular plate model and compared to the existing analytical solutions as well as the 
results of other four-node elements from the literature. The goal of this paper is to 
demonstrate the efficiency of the proposed assumed strain element also in the 
dynamic analysis of plane structures. 

Key words: Mindlin plate theory, finite elements, assumed natural strains, problem 
dependent linked interpolations, plate natural frequencies, consistent mass matrix 

Sažetak 

Četveročvorni konačni element za numeričko modeliranje ploča po Mindlinovoj teoriji 
razvijen je s usvojenim interpolacijama polja smicanja te je, u usporedbi s drugim 
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poznatim konačnim elementima iz literature, pokazao vrlo dobro ponašanje pri 
statičkoj analizi umjereno debelih, ali i vrlo tankih ploča. Polazne interpolacijske 
funkcije ovog pločastog elementa su potpuni kubni polinom za polje transverzalnih 
pomaka i kvadratni za polja rotacija presjeka, ali su pri tome same interpolacije na 
kubnoj razini ovisne o materijalnim vrijednostima („problem dependent“). Derivirani 
izraz za deformacije smicanja je potom reduciran za one članove koji uzrokuju pojavu 
„lockinga“ (loše konvergencije) kod modela vrlo tankih ploča. U ovom radu takav 
model elementa proširen je za primjenu na dinamičku analizu pločastih modela, 
odnosno određivanja vlastitih frekvencija titranja ploča okomito na ravninu modela 
uz jednoliko distribuiranu masu ploče. Analiziran je utjecaj konzistentno zadane 
matrice masa na vrijednosti prvih 12 tonova prirodnih frekvencija. Rezultati su 
verificirani na modelu kružne ploče za koji postoje analitička rješenja te su uspoređeni 
i s rezultatima drugih efikasnih četveročvornih elemenata iz literature. Ovim radom 
želi se pokazati da je analizirani četveročvorni konačni element efikasan i 
konkurentan i za primjenu na dinamičke probleme koji se mogu pojaviti u 
projektiranju površinskih konstrukcija. 

Ključne riječi: Mindlinova teorija ploča, konačni elementi, usvojene prirodne 
deformacije, vezane interpolacije ovisne o problemu, vlastite frekvencije ploča, 
konzistentna matrica masa

1. Introduction 

The finite element method is a powerful tool for solving a variety of 
mechanical problems involving solids, shells, plates, membranes and bars 
of various types. The mechanical model is discretized by a set of finite 
elements and the approximate solution is calculated as the result of 
linearized equations. The question if the solution is close enough to the 
exact result is inevitable. Of course, if the model is composed of an 
appropriate number of elements with dense node meshes, the solution will 
be in the margin of tolerable errors, but great efforts have been made by 
researchers to develop finite elements able to approximate exact solutions 
on coarse meshes with as few elements possible. 

Here, we propose a novel finite element for modeling of moderately 
thick plates that is designed on the so-called assumed strain concept. This 
concept was introduced by Hughes and Tezduyar in [1] and applied on the 
quadrilateral element for the “Kirchhoff mode” of quadratic order. The idea 
was exploited afterwards by MacNeal [2] and by Bathe and Dvorkin [3] on 
the Mindlin type quadrilaterals. They assumed that linear shear strain fields 
correct deficiencies of the isoparametric method and avoid spurious shear 
strains on irregular element shapes. MacNeal concluded that for n-node 
element the number of the independent transverse shear coefficients to 
prevent spurious mechanisms is equal to n. Bathe and Dvorkin used the 
same assumption for the shear but they interpreted it as the covariant 
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tensor components. Their four-node elements are known in literature as 
QUAD4 and MITC4 respectively. 

Since then, many improvements have been attempted and the presented 
four-node element is one of the kind. This element starts with the full cubic 
polynomial interpolation for the plate transverse displacement and 
quadratic for the two global plate section rotations and captures only 
favorable terms in the shear strain expressions meaning that the shears are 
assumed to control convergences. The element is already tested on the 
variety of benchmark examples, and compared to the other efficient 
elements from the literature. In this paper, the abilities of the element are 
demonstrated on the dynamical benchmark problem of solving first few 
vibration modes for the clamped circular plate with uniform thickness, 
where an irregular mesh is inevitable and for which the analytical exact 
solution exists and can be used for comparison. 

2. New four-node Mindlin-type plate element 

Firstly, we want to describe a new four-node quadrilateral element 
designed to model plate problems according to the Mindlin plate theory, 
meaning that the bending, as well as the shear strains are involved in the 
stiffness matrix assemblage. The element describes the plate with uniform 
thickness t, with material parameters: E, the elasticity modulus, G, the shear 
modulus, ν, the Poisson’s ratio and k, the section shear correction factor 
usually taken as k=5/6 for plates. 

2.1. Interpolations for a four-node element 

First, we choose an interpolation of the transverse displacement field 
(w). A quadratic polynomial [4] or a cubic polynomial [5] are good options 
for the later derivation of the assumed shear strain field. At the same time, 
the interpolations for the two section-rotation fields (θx and θy) have to be 
polynomials of one order lower than those used for interpolation of 
transverse displacements. See [4] and [5] for details, where the evolution of 
this assumption has been explained.  

If a quadratic polynomial is used to interpolate displacement over the 
element domain, nine terms of the Pascal’s triangle must be engaged and 
associated with some degrees of freedom to satisfy polynomial 
completeness. All existing nodal parameters w1,…,w4, θx1,…,θx4, θy1,…,θy4 , are 
involved together with one extra internal parameter wBb0 (regarded as an 
internal bubble displacement parameter). 

If a cubic polynomial is chosen, another seven cubic function items have 
to be added in the displacement interpolation and seven more parameters 
should be associated. Four of them are the element-side curvature 
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increments 
ij according to the differential equation solution of the two-

node beam element and the last three are cubic internal parameters wBb3, 
wBb4 and wBb5 that do not affect the conformity of the displacement field at 
the connection with adjacent elements. 

At the same time, the associated section-rotation fields should also be 
expanded to the quadratic order adding five new items to each of them. The 
associated parameters include four projections of the curvature increments 
and the fifth is a rotation bubble parameter different for each field, namely 
θBb1 and θBb2. 

The final cubic interpolation for the transverse displacement reads: 

4321
2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
wwwww

 











       12121212

2

2

1

2

1

4

1
yyxx xxyy 


 



       43434343

2

2

1

2

1

4

1
yyxx xxyy 


 



       23232323

2

2

1

4

1

2

1
yyxx xxyy 


 



       14141414

2

2

1

4

1

2

1
yyxx xxyy 


 



 
0

22

4

1

4

1
Bbw

 
  

 
62

1

4

2

12
12

3 L








642

1
2

23
23

3 L






  

 
62

1

4

2

34
34

3 L








642

1 2

41
41

3 L






  

 
3,

23

3

1

4

1

4
Bbw

 


4,

32

3

1

44

1
Bbw

 


5,

33

3

1

44
Bbw

 
 ,        (1) 

The first line in (1) is a bilinear Lagrangian interpolation among nodal  
displacement  parameters  w1,…,w4   and the five following lines complete  
the quadratic linked interpolation form [4], involving global nodal rotations 
θx1,…,θx4, and θy1,…,θy4 , together with the extra internal quadratic bubble 
displacement  parameter  wBb0.   The  seventh  and the  eighth line are cubic 
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interpolation expansions related to the side curvature increments 
ij  that 

can be expressed as problem dependent parameters associated with the 
existing nodal displacements and rotations. For example, for the element 
side connecting node 1 to node 2, the side curvature increment 

12 is 

proportional to the expression for shear strain (in brackets): 
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In the expressions (1) and (2) L12 denotes the element side length (in 
general Lij denotes any other element side length connecting node i to node 
j). D is the plate bending rigidity, D=Et³/(12(1-ν²)) and Gtk is the shear 
rigidity. The final line in (1) completes the cubic expansion with the new 
inner-element bubble parameters wBb3, wBb4 and wBb5.  

Rotation fields, which are linked to the transverse displacement 
interpolation (1), are interpolated separately with quadratic polynomials: 
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Here the Lagrangian interpolation functions denoted by Ni are identical 
as in the first line of (1), but associated with the global nodal rotations. 

ij  

are identical side curvature increments as in (2), but multiplied with the 
element side projections, while θBb1 and θBb2 are again the internal bubble 
parameters of the rotation fields that complete the quadratic polynomial 
form. 
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In total, all three fields are interpolated with 12 nodal parameters 
(degrees of freedom) and with 6 internal parameters that can be statically 
condensed at the end of the stiffness matrix formation process. 

2.2. Assumed shear strain field 

The shear strains in global directions
x and

y for the Mindlin plate 

assumptions follow the kinematics: 

yx
dx

dw
   and 

xy
dy

dw
  ,             (5) 

 
Figure 1. Arbitrary 4-node quadrilateral plate element – relations between shear 

strains in the global and in the natural coordinates 

as well as constitutive relations: 

Gtk

Vx
x    and 

Gtk

Vy
y  ,             (6) 

where Vx and Vy are the shear stress resultants. 
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If alternatively, shear strains are formulated for the element natural 
coordinates, then the line “s” passing through an arbitrary inner point with 
constant η, is taken into the consideration (Fig. 1). The shear strain γs,ξ can 
now be expressed with respect to the global shear strains as 
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meaning that it can be computed as a sum of the derivative of displacement 
field (1) with respect to s, and the rotational fields (2) and (3) projected to 
the normal on the “s” line [6]. 
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Similar expression for γs,η can be formulated for “s” line passing through 
an arbitrary inner point with constant variable ξ (see [6]). 

2.3. The patch test 

The ability of the elements to produce exact stresses and to 
accommodate exact displacement is usually tested on the patchwork of 
irregular elements framed in a rectangular domain. A simple stress 
condition of constant cylindrical bending is assumed. On the outer nodes, all 
displacement and rotation degrees of freedom are prescribed and exact 
solution for the inner nodes is expected together with the exact stresses in 
the integration points of all elements.  

It has been already demonstrated [7] that quadratic linked interpolation 
part from (1), (3) and (4) is sufficient to pass the cylindrical bending test on 
the patchwork geometry with constant field for moments and zero shear 
forces. Full cubic interpolation from (1), (3) and (4) also passes the patch 
test since all higher order terms are zeroed by the minimization procedure 
on the total energy of the problem [5]. 
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Nevertheless, a pure displacement based element constructed with only 
the described interpolations exhibits locking phenomena with coarse 
meshes and for very thin geometries. 

Note that shear strain expression (8) is in neat contrast with the bending 
strain expressions [6] regarding equilibrium relations on one side and the 
actual polynomial order on the other. Therefore, in (8) any term associated 
with functions of the higher order then linear (any after the first two lines 
in (8)) can be omitted in the assumed shear expression as well as any cubic 
expansion parameter (including bubbles), with no effect on the ability to 
pass the constant bending patch test where shear should be zero. 

After careful analysis, the best results are achieved by eliminating (or 
subtracting) only the parameter in the third line of (8). The shear strain part 

 ,s that makes the displacement based element too stiff is  
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and will be excluded from the final expression for the shear strain 
 ,s

. 

Similarly, for expression γs,η with constant natural coordinate ξ, we get 

the best results in avoiding locking phenomena by subtracting the 

following shear strain part: 
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.     (10) 

The result of this reduction is the assumed form for the shear strains 

for a new element that will become of the mixed type, but with the 

stiffness matrix assembled by involving only the strain functionals. 

More details about the assumed strain four-node element can be found 

in [6]. 

3. Stiffness and mass matrix 

To determine the natural frequencies of the structural system, the 
homogeneous equation of the form 

 0pMpK s  sss
  (11) 
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has to be solved, with sK as the global stiffness matrix and sM  as the 

global mass matrix, while sp is the vector of global nodal degrees of freedom 

with sp its second derivative in time.  

The global stiffness matrix sK is assembled from stiffness matrices eK  

of all elements in the standard minimization process of the total potential 
energy. The element stiffness matrix is formed with two independent 
contributions, the bending energy part and the shear energy part (Mindlin 
theory assumption): 

 
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SS

T

S

Ae

BB

T

BSB dAdA BDBBDBKKKe
,                    (12) 

where the curvature strains and the shear strains are expressed with 

so-called B  matrices via element nodal degrees of freedom ep : 

eBpBκ  ,                          (13) 

eSpBγ  ,             (14) 

and where 
BD and SD are the constitutive matrices for bending and 

shear respectively 
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The mass matrix is calculated from the element mass matrices 
eC ,M  as 

fully populated consistent mass matrices integrated using the standard 
finite element procedure [8]: 

  
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x
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33
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. (16) 

ρ in (16) is a volume unit mass, t is the plate-section thickness, while 

wN is a vector of all shape functions associated with the nodal displacement 

w in (1), xN  a vector of all shape functions associated with the nodal 

rotation θx in (3) and yN  a vector of all shape functions associated with the 
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nodal rotation θy in (4), since (1), (3) and (4) can be rewritten in matrix 
forms 

 eww pN , (17) 

 exx pN  , (18) 

 eyy pN  . (19) 

ep in (17), (18) and (19) is again a vector of all element nodal degrees of 

freedom. 

If the homogenous global model solution for ,sp  in time is assumed, 

equation (11) can be simplified to the generalized eigenvalue equation 

   0pMK s   ,

2

ss , (20) 

where ω is an eigenvalue representing the circular natural frequency of 

the problem vibration and ,sp  is the eigenvector of that vibration. Number 

of the problem eigenvalues ωi are equal to the number of non-zero global 
nodal degrees of freedom, but usually only the lowest few are checked and 
are the most accurate. 

4. A numerical example 

A circular plate with the perimeter clamped support conditions of 
uniform thickness t and uniform mass (Fig. 2) is analyzed and the 
eigenvalues and eigen shape modes are determined. The geometrical 
properties used are given in consistent units: radius of the circle, R=5.0 m 
(2R=10.0 m) and two thickness conditions, t=1.0 m or t=0.1 m representing 
moderately thick and thin model slenderness, respectively. The material 
properties used are: the elasticity modulus, E=2.0*1011 Pa, the Poisson’s 
coefficient, ν=0.3 and the plate volume mass, ρ=8000.0 kg/m3. 

Finite element mesh for the circular plate is symmetric with respect to 
both principal axes and in every quarter there are either 3 (very coarse 
mesh), 12 (moderately coarse mesh as shown in Fig. 2) or 48 elements 
(moderately dense mesh). First 12 eigenvalues of the model with a thick 
(t/2R= 0.1) and a thin (t/2R= 0.01) slenderness are calculated according to 
the procedure embedded in the finite element software FEAP.  Their results 
are given in the Tables 1 to 3 and Figs. 3 to 6. First 8 mode shapes for the 
circular plate are depicted in Fig. 5. Some eigenvalues are coming in 
identical pairs but they belong to different anti-symmetric eigen-vectors. 
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Figure 2. Clamped circular plate and the mesh with 12 elements in a quarter 
of the circle 

Table 1 compares the eigenvalues of all three mesh densities calculated 
with the present element denoted as Q4U3-AS (four node element with 
cubic interpolations and assumed natural strain). Percentage of errors for 
the eigenvalues with respect to the analytical solutions are presented in Fig. 
3. 

Tables 2 and 3 compare the eigenvalues of the present element with the 
elements from the literature. MIN3 is a Tessler’s and Hughes’s three-node 
Mindlin plate element with improved transverse shear [9], ANS4 is a Lee’s 
four node element also constructed with the assumed natural shear strain 
concept [10] and CS-DSG3 is a triangular element form [11] modelled with 
the cell-based smoothed discrete shear gap method. 

The results from [11] in Tables 2 and 3 are obtained for the plate 
discretized by the mesh of 394 triangular elements and 222 nodes, while for 
the present element Q4U3-AS the results are obtained with the comparable 
mesh of 192 quadrilateral elements and 209 nodes. 

The error of the results for all elements from Table 2 are presented in 
Fig. 4 while from Table 3 are presented in Fig. 5. 
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Table 1. Clamped circular plate. Convergence of results for various mesh densities of 

the 12 lowest parameterized natural frequencies, DtR /2    with 

slenderness ratio t/2R=0.1 

 Q4U2-AS Q4U2-AS Q4U2-AS Exact 

Mode (4x3 mesh) (4x12 mesh) (4x48 mesh) [11] 

1 9.525 9.320 9.320 9.240 
2 19.154 18.055 18.051 17.834 
3 19.154 18.055 18.051 17.834 
4 30.288 27.302 27.511 27.214 
5 30.460 27.436 27.551 27.214 
6 40.130 32.176 31.236 30.211 
7 46.317 37.330 37.601 37.109 
8 46.317 37.330 37.602 37.109 
9 63.337 46.128 44.171 42.409 

10 63.341 46.128 44.172 42.409 
11 67.204 48.204 48.158 47.340 
12 81.791 48.438 48.284 47.340 

 

 

Figure 3. Clamped circular plate. Percentage of the error for the first 12 
eigenvalues for the three mesh densities. 
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Table 2. Clamped circular plate. 12 lowest parameterized natural frequencies,

DtR /2    for the slenderness ratio t/2R=0.1.  Comparison with the exact 

solution and the results from the literature.  

 MIN3 ANS4 CS-DGS3 Q4U2-AS Exact 

Mode    (Present) [11] 

1 9.968 9.261 9.277 9.320 9.240 
2 20.306 17.947 17.802 18.051 17.834 
3 20.326 17.947 17.810 18.051 17.834 
4 32.780 27.035 27.065 27.511 27.214 
5 32.791 27.657 27.080 27.551 27.214 
6 37.159 30.322 30.437 31.236 30.211 
7 47.544 37.258 36.773 37.601 37.109 
8 47.599 37.258 36.853 37.602 37.109 
9 55.353 43.270 42.410 44.171 42.409 

10 55.661 43.270 42.543 44.172 42.409 
11 64.934 47.707 46.667 48.158 47.340 
12 64.995 47.803 46.786 48.284 47.340 

Table 3. Clamped circular plate. 12 lowest parameterized natural frequencies,

DtR /2    for the slenderness ratio t/2R=0.01. Comparison with the exact 

solution and the results from the literature.  

 MIN3 ANS4 CS-DGS3 Q4U2-AS Exact 

Mode [11]   (Present) [11] 

1 10.4082 10.2572 10.2478 10.1837 10.2158 
2 22.2198 21.4981 21.3092 21.1222 21.2600 
3 22.2444 21.4981 21.3246 21.1224 21.2600 
4 37.7461 35.3941 35.0852 34.2582 34.8800 
5 37.7816 35.5173 35.1137 34.3567 34.8800 
6 43.0344 40.8975 40.3370 39.6105 39.7710 
7 57.8881 52.2054 51.6052 49.5884 51.0400 
8 58.0836 52.2054 51.7926 49.5892 51.0400 
9 68.7260 63.2397 61.7079 60.2619 60.8200 

10 69.2354 63.2397 62.0897 60.2634 60.8200 
11 84.3603 71.7426 71.0569 66.7670 69.6659 
12 84.4507 72.0375 71.3304 67.0462 69.6659 
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Figure 4. Clamped circular plate. Percentage of the error in the first 12 
eigenvalues of the presented element compared with the errors of the elements 

from literature. Referred to the slenderness t/2R=0.1. 

 

Figure 5. Clamped circular plate. Percentage of the error in the first 12 
eigenvalues of the presented element compared with the errors of the elements 

from literature. Referred to the slenderness t/2R=0.01. 
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Figure 6. Clamped circular plate. Shape of eight lowest eigen modes [11].   (a) 
mode 1, (b)-(c) modes 2 and 3, (d)-(e) modes 4 and 5, (f) mode 6, (g)-(h) modes 7 

and 8. 

In Table 1 (Fig. 3), a frequency deviation in 6th, 9th and 10th mode can be 
observed. Similar behavior but in smaller scale can be observed for other 
elements from the literature (Figs. 4 and 5). We attribute this deviation to 
the pattern of the model meshes, which all have to pass from the radial 
shape on the model perimeter to the quasi rectangle shape around the plate 
center. The concerned modal shapes are more influenced than the other 
ones. 
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Nevertheless, the results obtained for the present element are quite 
satisfactory and comparable to other relevant elements from the literature. 

Also, as seen on Fig. 3, the results of Q4U3-AS element for eigenvalues on 
the moderately coarse mesh (4x12) do not differ much from those obtained 
on 4-times denser mesh, concluding that the presented element is quite 
versatile and can be used in any modal analysis in practice with acceptable 
efforts in problem description.  

5. Conclusion 

A new finite element Q4U3-AS constructed on the assumed shear strain 
concept and derived from the starting cubic linked and problem dependent 
interpolations is presented. The element is tested on the dynamic 
benchmark problem of finding the eigenvalues for the circular plate of 
uniform thickness. The assessment on various element mesh densities is 
tested and the element is compared with other elements from the literature. 

The new Q4U3-AS element has been validated in the presented 
dynamical analysis and will further be implemented as an element used in 
static or dynamic analysis of layered structures within the acknowledged 
research project. 
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