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DETECTION OF A CHARACTERISTIC LENGTH IN 
2D ORTHOTROPIC MICROPOLAR CONTINUUM 

ODREĐIVANJE KARAKTERISTIČ NE DULJINE 
RAVNINSKOG ORTOTROPNOG MIKROPOLARNOG 

KONTINUUMA 

Damjan Jurković*, Gordan Jelenić*, Sara Grbčić Erdelj*, Dragan 
Ribarić*, Laura Grbac*, Edita Papa Dukić*, Nina Čeh* 

Abstract 

With the aim of obtaining several micropolar engineering parameters, a numerical 
and experimental analysis of an artificially generated orthotropic microstructure is 
performed. Young’s moduli and Poisson's ratios of the microstructure are 
determined using homogenisation by asymptotic analysis. Four-point bending 
experiments are performed on the aluminium beams with the described 
microstructure. The same experiments are also performed numerically. Using the 
previously derived analytical expression for the strains in a plane orthotropic 
micropolar continuum, one characteristic length is determined. This length 
corresponds to the characteristic bending length in the isotropic continuum and is 
one of the four characteristic lengths of the planar orthotropic continuum. 
Experimental and numerical values agree well, despite the slight scatter of the 
experimental results. The methodology presented here can be used for further 
determination of bending lengths. 

Key words: orthotropic micropolar continuum, four-point bending experiments, 
characteristic bending length, homogenisation, numerical analysis 

Sažetak 

U cilju dobivanja više mikropolarih inženjerskih parametara provedena je 
numerička i eksperimentalna analiza umjetno generirane ortotropne 
mikrostrukture. Youngovi moduli i Poissonovi koeficijenti mikrostrukture utvrđeni 
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su pomoću homogenizacije asimptotskom analizom. Eksperimenti čistog savijanja 
provedeni su na aluminijskim gredama s opisanom mikrostrukturom. Isti su 
eksperimenti provedeni numerički. Koristeći prije izvedene izraze za deformacije u 
ravninskom ortotropnom mikropolarnom kontinuumu određena je jedna 
karakteristična duljina. Ova duljina odgovara karakterističnoj duljini za savijanje u 
izotropnom kontinuumu i jedna je od četiri karakteristične duljine ravninskog 
ortotropnog kontinuuma. Eksperimentalne i numeričke vrijednosti dobro se 
poklapaju unatoč blagom rasipanju eksperimentalnih rezultata. Ovdje predstavljena 
metodologija može se koristiti za daljnje određivanje karakterističnih duljina. 

Ključne riječi: ortotropni mikropolarni kontinuum, eksperimenti čistog savijanja, 
karakteristična duljina za savijanje, homogenizacija, numerička analiza 

1. Introduction 
Micropolar elasticity theory [1] has the capacity to describe materials 

with pronounced microstructure and sharp stress gradients more 
accurately. However, detection of the engineering parameters that 
describe micropolar continuum, of which there are six even in the simplest 
case of a linear elastic and centrosymmetric continuum, remains the 
leading barrier to its wider use.  

It was shown in [2] that by solving the boundary value problem of 
cylindrical bending of a rectangular plate, one specific isotropic micropolar 
material parameter can be detected, from which we may identify the 
characteristic length for bending, directly responsible for the so-called size 
effect, whereby smaller specimens generally tend to be stiffer than larger 
ones. A procedure to detect the characteristic length for bending in two 
artificially created types of material with microstructure was presented in 
[3], where three-point bending experiments were conducted on a set of 
beam specimens of different sizes. An argument in favour of four-point 
bending was presented in [4] and verified against the results in [3].  
However, both microstructures from [3] have some degree of orthotropy, 
which has motivated the current research, initiated in [5] and presented in 
[6], where a new simple orthotropic material model was designed. This 
model does not employ the full orthotropic micropolar continuum 
formulation as in [7] but a reduced one, with only one characteristic length 
for bending.  

In this paper the material model from [6] combined with the 
methodology from [3] is used to detect the characteristic length of an 
artificially designed orthotropic micropolar continuum. 

 
 

 

2. Material model 
Material model that is used for detection of the characteristic length for 

bending is presented in [6]. We shall dub this model reduced, as orthotropy 
is assumed only in the constitutive tensor relating strains to stresses (and 
not in the one relating curvatures to couple stresses). Full orthotropic 
micropolar continuum, as presented in [7], would assume orthotropy in 
the latter as well. It is shown in [8] that this would then result in as many 
as four characteristic lengths for a plane-strain case. It should be noted 
that these papers do not differ between characteristic lengths for bending 
and torsion since it is questionable how such a distinction may be made for 
orthotropic continuum. Since the reduced model considered in this work 
was developed for the detection of characteristic length for bending from 
pure plate-bending experiments, it assumes boundary conditions in a state 
of plane strain. This leads to a reduction of material parameters needed to 
nine, with only one characteristic length for bending. Furthermore, the 
constitutive law for normal strains is assumed as [9] 
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where the constitutive tensor is known to be symmetric. This further 
reduces the number of independent parameters. Hence, to describe this 
continuum model, three Young's moduli, three Poisson's ratios and one 
characteristic bending length are needed. In [5,6], an analytical solution for 
strain at the edge of the beam subjected to pure bending has been derived 
as 
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where   ,    and  ̃ are functions of the above-mentioned material 
parameters, defined in [9] as 

 ̃  √ ̃  ̃  
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The extra material parameter   depends on the characteristic length for 
bending    and the height of the beam: 
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2.1 Geometry of microstructure 
Figure 1 shows microstructure presented in [3] which is analysed in 

this paper. It consists of aluminium matrix with circular holes drilled so as 
to form a hexagonal pattern. The hole radius is       mm, the length of a 
unit cell      mm and the height of a unit cell is         mm. Similar 
microstructure with a different length of unit cell and, consequently, lower 
length to height ratio was able to be analysed as an isotropic micropolar 
material in [4].  

 

Figure 1. Geometry of the microstructure 

 

All analysed samples have a width of 12.7 mm. Aluminium matrix is 
made from the EN-AW-6060-t66 alloy. From the tests performed on 
control (undrilled) specimens, Young's modulus of 72.399 GPa and 
Poisson's ratio of 0.3 have been obtained. 

3. Representative-volume element (RVE) homogenisation 
As this analysis considers the microstructure modelled as an 

orthotropic micropolar continuum, homogenisation of its engineering 
parameters needs to be carried out. With this in mind, a set of virtual 
experiments have been conducted. For this task, a representative-volume 
element (RVE) has been chosen as for a case of a square array of matrix 
inclusions [10], owing to the specific beam geometry with continuous 
longitudinal edges. An asymptotic analysis with RVEs of multiple sizes has 
been conducted and analysed for accuracy. The smallest RVE has been 
chosen as a unit cell shown in the centre of Figure 1. Other RVEs have been 
generated by multiplying number of rows and columns by a factor of two, 
i.e., 1x1, 2x2, 4x4, 8x8, 16x16 and 32x32, and named accordingly.  

Virtual experiments have been performed using finite element method 
in FEAP [11]. The problem has been modelled as a plane stress problem in 
order to obtain all the material parameters from a unique experimental 
setup. The basic unit cell has been modelled using 116 nodes and 160 
constant strain triangle (T3) elements. The meshes for other RVEs have 
been constructed by multiplication of unit cell mesh. 

All RVEs have been axially loaded in a way that a continuous 
displacement is applied to one boundary of the specimen while the 
displacements in the same directions on the opposite boundary are 
restrained. In addition, two chosen nodes have the displacements in the 
orthogonal direction restrained as well to prevent rigid body motion. The 
same experiment is then repeated by rotating boundary conditions by 90°. 
Figure 2 shows one such experiment on unit cell (1x1 RVE).  

The magnitude of the applied homogenous displacement         is 
chosen to provide the global homogenised normal strain        . A 
resulting shortening in the orthogonal direction       is then obtained from 
the equivalent area bounded by the displacement curve of the unloaded 
edge   ( ). This value is used to calculate the homogenised strain in the 
orthogonal direction   . The same procedure for attaining equivalent 
displacements is used to obtain equivalent reactions in the direction of 
loading        at the restrained nodes, used to calculate a homogenised 
stress    in the direction of loading. Equivalently, the homogenised normal 
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strain    is calculated from the volume equivalent to that bounded by the 
Gauss-point strains per element area. 

 
Figure 2. Axial tension virtual experiment on the unit cell (1x1 RVE) 

From the computed values of stresses and strains the engineering 
parameters   ,   ,    ,    ,     and     follow as 
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  ,   ,     and     are also calculated from averaged values of 
displacements and reactions along the edges. These values are compared 
to the values obtained before. It can be seen in Figure 3 that the difference 
between the values obtained using the two procedures converges towards 
zero as RVEs become larger. This convergence is slower for parameters    
and      which use the displacements and reactions from the nodes on the 
edges with discontinuities.  The same convergence does not happen with 
parameters     and     which remain in deviation of around 31.5% and 
37% respectively. Note that here we do not compare the values obtained 
from average displacements but those obtained from average strains. 

Young’s modulus    is obtained analytically by comparing the areas 
of RVEs with holes with an equivalent rectangular area and is obtained as 
equal to 48.022 GPa for all specimens. For all the other engineering 

 

parameters a pattern of convergence was noticed. Because of that, an 
asymptotic analysis was conducted. Based on the pattern of convergence, 
an inverse tangent function was chosen as a fitting function. Because of its 
different behaviour compared to other representative volumes, 1x1 RVE 
has not been included in the fitting procedure. Figure 4 shows fitting the 
   and     values in this way. The fitting function is monotonically 
decreasing for parameters   ,    and     (only the first value shown), and 
monotonically increasing for    ,    , and     (only the last value shown). 
The 1x1 RVE results do not follow the monotonous converging trend for 
Young’s moduli, but for Poisson’s ratios it perfectly coincides with the 
fitting function, with largest error being in     shown in Figure 4.  

 

Figure 3. Convergence of material parameters obtained with different averaging 
Now all that is left are two Poisson’s ratios     and     which can be 

computed from (1). All computed parameters are displayed in Table 1. 

Table 1. Computed engineering parameters of the analysed microstructure 

                                                      

 37.787 28.623 48.022 0.243 0.157 0.184 0.119 0.199 0.199 
 

The symmetry of constitutive tensor from equation (1) can be used as a 
control term when substituting all precalculated values. This results in an 
error in symmetry of 0.26%, which is assumed to be a result of decimal 
rounding of the individual RVEs parameters substituted into the fitting 
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function. In [5], the homogenisation procedure was performed with 
homogenous boundary conditions without asymptotic analysis (just on a 
unit cell), which yielded an error of 46.22%, exposing the need for the 
present method. It should be noted that if the periodic boundary 
conditions had been applied to the RVE instead of the homogenous 
conditions, engineering parameters could have been determined from the 
1x1 RVE. This is because periodic boundary conditions cancel the Saint-
Venant principle [12]. Nevertheless, the analysis presented here is 
sufficient for this research.  

 

Figure 4. Asymptotic analysis of parameters    and     

 

 

4. Four-point bending experiments on beam specimens 
In an effort to detect the characteristic length for bending of our model, 

four-point bending experiments on the beams with described 
microstructure were conducted. The experiment performed here is 
equivalent to the one in [4]. Four-point bending load was applied as shown 
in Figure 5. The geometry from Figure 5 is given in Table 2. Depending on 
a number of rows of holes, four different beam types are analysed, named 
B1, B2, B3 and B4. Three specimens for each beam type are tested. 

 

Figure 5. Representation of the four-point load experiments with disposition of 
strain gauges 

Table 2. Values from the experiment representation in Figure 5 

Sample l [mm] h [mm] b [mm] d [mm] a [mm] c [mm] 2F [kN] 

B1 150 12.7 12.7 54 12 36 1.5 

B2 280 25.4 12.7 128 10 66 2.5 

B3 400 38.1 12.7 248 10 66 2.5 

B4 530 50.8 12.7 297 13 103.5 5.0 
 
Due to the specimen size, different specimens have been tested using 

different universal testing machines (UTMs) and load cells. Beam B1 is 
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tested using the load cell with capacity of 5 kN, beams B2 and B3 are 
tested using the load cell with capacity of 300 kN, and B4 using the load 
cell with capacity of 50 kN. Difference between load cell capacity and 
applied loads could be a factor in accuracy of the results. The beams are 
loaded with a loading speed of 10 N/s. The strains are recorded directly 
using HBM 6/120 LY43 strain gauges placed in the three cross sections, on 
top and bottom of the specimens (Figure 5). An exception is beam B1 
which is too small to fit three strain gauges, so only two strain gauges have 
been placed on each boundary. The strain gauges are placed either closest 
to the drilled hole or halfway between two holes. This results in samples 
B2 and B4 having three strain gauges in the first position and another 
three in the second, B1 having two strain gauges in each position and B3 
having two strain gauges in the first position and four in the second. It 
turns out that the strains at points closest to the drilled holes are smaller 
than those in between them. This is a result of the microstructure with a 
stress distribution mechanism which consists of compressive and tensile 
arches. GOM Aramis 12M optical system has been used for contactless 
measurement of kinematic field on the faces of specimens and 
displacement of the discrete point on the loading element of the UTM. The 
system uses 12 MP cameras with 4096 x 3000 resolution and pixel size of 
3,45 μm. Optical measurements were caried out to measure the strains at 
the points where strain gauges have been placed via digital image 
corelation (DIC) method. 

4.1 Virtual four-point bending experiments 

The above-described experiments have been also simulated as virtual 
experiments. The meshes have been prepared as in Chapter 3, but this 
time twice as dense. Hence, e.g., the B1 mesh is made of 8,645 nodes and 
15,104 elements, while the B4 mesh is made of 125,831 nodes and 
226,560 elements. The need for such dense meshes comes from large 
stress gradient in the microstructure combined with poor behaviour of 
constant strain triangle (T3) elements in bending problems. However, with 
the aim of keeping the numerical model as simple as possible, such a 
model is sufficient at this stage of the research. 

4.2 Postprocessing of the results 

All force-displacement curves begin with nonlinear action that 
stabilizes over time. This is due to the so-called take up of play, during 
which the experimental setup assumes a stable position. In addition, it has 
been noticed that B2 beams have some nonlinear action at higher load 
values, and upon visual inspection it has been noticed that two specimens 
have some residual deformation. These effects were excluded from the 

 

analysis as only the linear part of force-displacement curve is of interest. 
This was performed by calculating the slope in a linear part of a force-
displacement curve smoothed out by a moving average convolution using 
ten data-points.  

DIC measurement does not allow measuring displacements (and thus 
also strains) at the edge of a specimen. Because of the stress distribution 
mechanism of the microstructure mentioned earlier, it has been decided 
not to interpolate the edge values in this paper. The recorded values for 
the displacement at the loading points were processed in the same way as 
the DIC data. 
Table 3 compares the measured values to the numerical ones. The 
measured values are taken as averages over three specimens. Large 
difference between the strain gauge and numerical strain data can be seen 
for the strain gauge values of B2 beam. It is assumed that a combination of 
plastic deformation and high noise from an inappropriate load cell has led 
to this result. Worsening of the UTM displacement result as the beams get 
smaller can be noted. Also, DIC measurement of the displacement at the 
point of force application yields results that are more in agreement with 
the numerical model. 

Table 3. Deviation of the measured values from the numerical ones 

Sample B1 B2 B3 B4 

Strain gauges [%] 2.8 28.5 2.2 5.9 

UTM [%] 71.9 34.2 40.9 9.9 

DIC [%] 16.8 26.6 32.9 0.3 

5. Identification of the characteristic length for bending 
It is possible to group all the engineering parameters within equation 

(2) into just one, homogenised Young's modulus, as 
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 When we substitute it back into (2), a well-known classical beam 
theory form is obtained as the result. When the bending moment     , 
the moment of resistance W and the average strain (considering the values 
nearest the holes and midway between them)     are substituted in (2),   

  
is obtained. These values are shown in Table 4. Here index e next to a 
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beam type denotes an experimental result, while n denotes a numerical 
result. Dependence of     on      is shown in Figure 6. It can be seen that 
the experimental data for B2, B3 and B4 samples manifest a size effect that 
is opposite to the one that occurs in the numerical results. Both 
experimental and numerical sets of data are interpolated using linear 
regression with the coefficient of determination (goodness-of-fit) and the 
linear equation parameters shown in Figure 6.  

Table 4. Calculated values of homogenised Young’s moduli 

Sample M [Nmm] W [mm3]     [/]     [Pa] 1/h2 [1/mm2] 

B1e 
2,700 3,41.40 

0.001198 64,630.882 
0.00620 

B1n 0.001189 66,509.149 

B2e 
82,500 1,365.59 

0.001331 43,963.946 
0.00155 

B2n 0.001778 33,977.196 

B3e 
82,500 3,072.57 

0.000646 40,092.177 
0.00069 

B3n 0.000679 39,544.168 

B4e 
207,000 5,462.35 

0.000943 38,733.437 
0.00039 

B4n 0.000890 42,570.020 

 

Figure 6. Homogenised Young’s moduli for strain data 

 

The material parameters that are contained within     can be separated 
into those that are dependent on       and those that are not, and then 
equated to the linear equation representing the chosen regression pattern: 
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Equating the factors on both sides of the above equation dependent on 
     provides the characteristic length for bending as 

   √
 (    )
   ̃                                                   ( ) 

while equating the constant terms give us a control equation 
 ̃
  

                                                          (  ) 
which compares the engineering parameters derived via asymptotic 
analysis with the one derived from the pure-bending test. By substituting 
the known and computed material parameters into (9) and (10), the 
characteristic length for bending and a measure of its accuracy is obtained. 
For the existing experimental data, the characteristic length for bending is 
in the range between 2.705 and 2.731 mm depending on maximum and 
minimum values of the three specimens for each beam with the average 
value being 2.718 mm. The error in (10) is in the range between 8.20% 
and 12.03% depending on the three specimens results with the average 
value of 10.18%. The numerical analysis has provided the characteristic 
length for bending of 2.614 mm with an error of 5.06%. This error may 
have occurred because left hand side of the equation (10) was calculated 
using engineering parameters for infinitely large specimen which were 
acquired via asymptotic analysis in Chapter 3.  It can be seen that these 
values are similar to those detected in [3], where isotropic formulation 
was used;         mm in the numerical analysis, and         mm for 
experimental values. The results obtained here are somewhat larger but 
the difference between the experimental and the numerical values is 
smaller. It should be noted that [3] uses a different definition of    which is 
denoted as      and which is connected to the one used here via 
   

   

√  (   ).  
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6. Alternative procedure for identification of the 
characteristic length for bending 
 Unfortunately, large difference between the strain-gauge data and 
the numerical data for specimen B2 has carried over to the accuracy of the 
characteristic length for bending. To resolve this problem, the approach 
used in [3] has been employed. The analytic expression for deflection at 
the loading point of a beam subjected to four-point bending is  

    (       )
      

                                            (  ) 

This result has the same use as (2) after substituting    . Now it is again 
possible to calculate values of     by substituting all the known results and 
deflection w. These new values of     against      are shown in Figure 7 
for the UTM and the DIC displacement data. It can be seen that the DIC 
data are much more similar to the numerical results than the UTM data but 
none of them agree with the results obtained by the strain gauges.  

 

Figure 7. Homogenised Young’s moduli for UTM and DIC displacement data 

This can also be seen from coefficients of determination that is equal to 
0.82 for strain gauges, 0.60 for DIC displacements and 0.44 for UTM 
displacement. 
 Upon further inspection of DIC data for the B1 beam sample it was 
noticed that displacement of the right-hand support had been included in 
the record. Although small, this displacement indicates certain compliance 
in the experimental setup. To account for this, that displacement has been 
subtracted from the total recorded displacement of the loading points. 

 

Table 5 shows average values of differently obtained slopes of the force-
displacement diagrams for beam B1, while their graphical representation 
is shown in Figure 8. It can be seen that the corrected DIC values are 
almost equal to the numerical results, with 97.85% equivalence, compared 
to 86.05% equivalence of the uncorrected DIC values. We can conclude 
that it is possible to filter out the effects of machine compliance in four-
point bending test by measuring displacement in all four points via DIC. 

Table 5. Slopes of force-displacement diagrams for sample B1 

Method of 
measurement UTM DIC Corrected 

DIC Numerical 

Slope 
[N/mm] 2,654.67 3,974.22 4,519.15 4,618.28 

Slope / num 
slope [%] 57.48 86.05 97.85 100.00 

 
Figure 8. Comparison of different force-displacement diagrams for beam B1  

7. Conclusion 
The methodology presented in this paper utilises material model 

developed in [6] for detection of micropolar engineering parameters. It is 
shown that the mentioned reduced orthotropic micropolar continuum 
model provides a result of the characteristic length for bending for the 
analysed microstructure comparable to that in [3]. This confirms that the 
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analysed microstructure comparable to that in [3]. This confirms that the 



154 GF • ZBORNIK RADOVA

 
 

presented methodology has a potential to be used for determination of the 
characteristic lengths in a full orthotropic micropolar continuum.  
Furthermore, the discrepancy between the experimentally and 
numerically captured size effects indicates the need for the usage of such a 
continuum. Anomalies that have occurred in the measurement of strains 
were attempted to be avoided using alternative techniques, by measuring 
the displacement. This did not result in a smaller error, which is probably 
due to the use of different load cells for different beams. Nevertheless, this 
analysis has shown that the optical measurement of the loading points in 
the four-point bending test via DIC can minimise the effects of the UTM 
compliance. 
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